Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892953

RESUMO

In recent years, the use of biomaterials has been required from the viewpoint of biocompatibility of electronic devices. In this study, the proton conductivity of Glycyl-L-serine (Gly-Ser) was investigated to clarify the relationship between hydration and proton conduction in peptides. From the crystal and conductivity data, it was inferred that the proton conductivity in hydrated Gly-Ser crystals is caused by the cleavage and rearrangement of hydrogen bonds between hydration shells formed by hydrogen bonds between amino acids and water molecules. Moreover, a staircase-like change in proton conduction with hydration was observed at n = 0.3 and 0.5. These results indicate that proton transport in Gly-Ser is realized by hydration water. In addition, we also found that hydration of GSGS and GS50 can achieve proton conduction of Gly-Ser tetrameric GSGS and GS50 containing repeating sequences. The proton conductivity at n = 0.3 is due to percolation by the formation of proton-conducting pathways. In addition to these results, we found that proton conductivity at GS50 is realized by the diffusion constant of 3.21 × 10-8 cm2/s at GS50.

2.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237692

RESUMO

Recently, it was reported that chitin and chitosan exhibited high-proton conductivity and function as an electrolyte in fuel cells. In particular, it is noteworthy that proton conductivity in the hydrated chitin becomes 30 times higher than that in the hydrated chitosan. Since higher proton conductivity is necessary for the fuel cell electrolyte, it is significantly important to clarify the key factor for the realization of higher proton conduction from a microscopic viewpoint for the future development of fuel cells. Therefore, we have measured proton dynamics in the hydrated chitin using quasi-elastic neutron scattering (QENS) from the microscopic viewpoint and compared the proton conduction mechanism between hydrated chitin and chitosan. QENS results exhibited that a part of hydrogen atoms and hydration water in chitin are mobile even at 238 K, and the mobile hydrogen atoms and their diffusion increase with increasing temperature. It was found that the diffusion constant of mobile protons is two times larger and that the residence time is two times faster in chitin than that in chitosan. In addition, it is revealed from the experimental results that the transition process of dissociable hydrogen atoms between chitin and chitosan is different. To realize proton conduction in the hydrated chitosan, the hydrogen atoms of the hydronium ions (H3O+) should be transferred to another hydration water. By contrast, in hydrated chitin, the hydrogen atoms can transfer directly to the proton acceptors of neighboring chitin. It is deduced that higher proton conductivity in the hydrated chitin compared with that in the hydrated chitosan is yielded by the difference of diffusion constant and the residence time by hydrogen-atom dynamics and the location and number of proton acceptors.

3.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290566

RESUMO

Chitosan, an environmentally friendly and highly bio-producible material, is a potential proton-conducting electrolyte for use in fuel cells. Thus, to microscopically elucidate proton transport in hydrated chitosan, we employed the quasi-elastic neutron scattering (QENS) technique. QENS analysis showed that the hydration water, which was mobile even at 238 K, moved significantly more slowly than the bulk water, in addition to exhibiting jump diffusion. Furthermore, upon increasing the temperature from 238 to 283 K, the diffusion constant of water increased from 1.33 × 10-6 to 1.34 × 10-5 cm2/s. It was also found that a portion of the hydrogen atoms in chitosan undergo a jump-diffusion motion similar to that of the hydrogen present in water. Moreover, QENS analysis revealed that the activation energy for the jump-diffusion of hydrogen in chitosan and in the hydration water was 0.30 eV, which is close to the value of 0.38 eV obtained from the temperature-dependent proton conductivity results. Overall, it was deduced that a portion of the hydrogen atoms in chitosan dissociate and protonate the interacting hydration water, resulting in the chitosan exhibiting proton conductivity.

4.
J Chem Phys ; 156(20): 204504, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649845

RESUMO

Wide ranges of absorbance spectra were measured to elucidate a difference in the antiferro-electric (AF) ordering mechanisms below 50 and 168 K in Cs3H(SeO4)2 and Cs3D(SeO4)2, respectively. Collective excitations due to deuterons successfully observed at 610 cm-1 exhibit a remarkable isotope effect. This indicates that the transfer state in the dimer of Cs3D(SeO4)2 is dominated by a deuteron hopping in contrast to Cs3H(SeO4)2, where a proton hopping makes a tiny contribution compared to a phonon-assisted proton tunneling (PAPT) associated with 440-cm-1 defbend . The fluctuation relevant to the AF ordering in Cs3D(SeO4)2 is not driven by the conventional deuteron hopping but by the phonon-assisted deuteron hopping associated with 310-cm-1 defbend . Consequently, Cs3D(SeO4)2 has a distinct ordering mechanism from Cs3H(SeO4)2, in which quantum fluctuations toward the AF ordering are enhanced through the PAPT associated with the in-phase libration.

5.
J Funct Biomater ; 11(4)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287321

RESUMO

Fuel cells using biomaterials have the potential for environmentally friendly clean energy and have attracted a lot of interest. Moreover, biomaterials are expected to develop into in vivo electrical devices such as pacemakers with no side effects. Ion channels, which are membrane proteins, are known to have a fast ion transport capacity. Therefore, by using ion channels, the realization of fuel cell electrolytes with high-proton conductivity can be expected. In this study, we have fabricated a fuel cell using an ion channel electrolyte for the first time and investigated the electrical properties of the ion channel electrolyte. It was found that the fuel cell using the ion channel membrane shows a power density of 0.78 W/cm2 in the humidified condition. On the other hand, the power density of the fuel cell blocking the ion channel with the channel blocker drastically decreased. These results indicate that the fuel cell using the ion channel electrolyte operates through the existence of the ion channel and that the ion channel membrane can be used as the electrolyte of the fuel cell in humidified conditions. Furthermore, the proton conductivity of the ion channel electrolyte drastically increases above 85% relative humidity (RH) and becomes 2 × 10-2 S/m at 96% RH. This result indicates that the ion channel becomes active above 96%RH. In addition, it was deduced from the impedance analysis that the high proton conductivity of the ion channel electrolyte above 96% RH is caused by the activation of ion channels, which are closely related to the fractionalization of water molecule clusters. From these results, it was found that a fuel cell using the squid axon becomes a new fuel cell using the function of the ion channel above 96% RH.

6.
J Funct Biomater ; 11(4)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187243

RESUMO

Energies based on biomaterials attract a lot of interest as next-generation energy because biomaterials are environmentally friendly materials and abundant in nature. Fuel cells are also known as the clean and important next-generation source of energy. In the present study, to develop the fuel cell based on biomaterials, a novel biofuel cell, which consists of collagen electrolyte and the hydrogen fuel generated from photochemical system II (PSII) in photosynthesis, has been fabricated, and its property has been investigated. It was found that the PSII solution, in which PSII was extracted from the thylakoid membrane using a surfactant, generates hydrogen by the irradiation of light. The typical hydrogen-generating rate is approximately 7.41 × 1014 molecules/s for the light intensity of 0.5 mW/cm2 for the PSII solution of 5 mL. The biofuel cell using the PSII solution as the fuel exhibited approximately 0.12 mW/cm2. This result indicates that the fuel cell using the collagen electrolyte and the hydrogen fuel generated from PSII solution becomes the new type of biofuel cell and will lead to the development of the next-generation energy.

7.
J Funct Biomater ; 11(3)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887392

RESUMO

Collagen films with proton conduction are a candidate of next generation of fuel-cell electrolyte. To clarify a relation between proton conductivity and formation of water networks in the collagen film originating from a tilapia's scale, we systematically measured the ac conductivity, infrared absorption spectrum, and weight change as a function of relative humidity (RH) at room temperature. The integrated absorbance concerning an O-H stretching mode of water molecules increases above 60% RH in accordance with the weight change. The dc conductivity varies in the vicinity of 60 and 83% RH. From those results, we have determined the dc conductivity vs. hydration number (N) per unit (Gly-X-Y). The proton conduction is negligible in the collagen molecule itself, but dominated by the hydration shell, the development of which is characterized with three regions. For 0 < N < 2, the conductivity is extremely small, because the water molecule in the primary hydration shell has a little hydrogen bonded with each other. For 2 < N < 4, a quasi-one-dimensional proton conduction occurs through intra-water bridges in the helix. For 4 < N, the water molecule fills the helix, and inter-water bridges are formed in between the adjacent helices, so that a proton-conducting network is extended three dimensional.

8.
J Chem Phys ; 152(15): 154502, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321268

RESUMO

In phases III and IV of Cs3H(SeO4)2, the vibrational state and intrabond transfer of the proton in the dimeric selenates are systematically studied with a wide range of absorbance spectra, a spin-lattice relaxation rate of 1H-NMR (T1 -1), and DFT calculations. The OH stretching vibrations have extremely broad absorption at around 2350 (B band) and 3050 cm-1 (A band), which originate from the 0-1 and 0-2 transitions in the asymmetric double minimum potential, respectively. The anharmonic-coupling calculation makes clear that the A band couples not only to the libration but also to the OH bending band. The vibrational state (nano-second order) is observed as the response of the proton basically localized in either of the two equivalent sites. The intrabond transfer between those sites (pico-second order) yields the protonic fluctuation reflected in T1 -1. Together with the anomalous absorption [νp2 phonon, libration, tetrahedral deformation (δ440), and 610-cm-1 band], we have demonstrated that the intrabond transfer above 70 K is dominated by the thermal hopping that is collectively excited at 610 cm-1 and the phonon-assisted proton tunneling (PAPT) relevant to the tetrahedral deformation [PAPT(def)]. Below 70 K, T1 -1 is largely enhanced toward the antiferroelectric ordering and the distinct splitting emerges in the libration, which dynamically modulates the O(2)-O'(2) distance of the dimer. The PAPT(lib) associated with the libration is confirmed to be a driving force of the AF ordering.

9.
Acta Crystallogr C ; 61(Pt 4): i39-40, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15805607

RESUMO

The structure of thallium selenate, Tl2SeO4, in a paraelastic phase (above 661 K) has been analysed by Rietveld analysis of the X-ray powder diffraction pattern. Atomic parameters based on the isomorphic K2SO4 crystal in the paraelastic phase were used as the starting model. The structure was determined in the hexagonal space group P6(3)/mmc, with a = 6.2916 (2) A and c = 8.1964 (2) A. From the Rietveld refinement it was found that two orientations are possible for the SeO4 tetrahedra, in which one of their apices points randomly up and down with respect to [001]. One Tl atom lies at the origin with 3m symmetry, the other Tl and one of the O atoms occupy sites with 3m symmetry, the Se atom is at a site with 6m2 symmetry and the remaining O atom is at a site with m symmetry. Furthermore, it was also found that the Tl atoms display anomalously large positional disorder along [001] in the paraelastic phase.

10.
Acta Crystallogr C ; 58(Pt 7): i92-4, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12094024

RESUMO

The structure of trithallium hydrogen bis(sulfate), Tl(3)H(SO(4))(2), in the super-ionic phase has been analyzed by Rietveld analysis of the X-ray powder diffraction pattern. Atomic parameters based on the isotypic Rb(3)H(SeO(4))(2) crystal in space group R3m in the super-ionic phase were used as the starting model, because it has been shown from the comparison of thermal and electric properties in Tl(3)H(SO(4))(2) and M(3)H(SO(4))(2) type crystals (M = Rb, Cs or NH(4)) that the room-temperature Tl(3)H(SO(4))(2) phase is isostructural with the high-temperature R3m-symmetry M(3)H(SO(4))(2) crystals. The structure was determined in the trigonal space group R3m and the Rietveld refinement shows that an hydrogen-bond O-H...O separation is slightly shortened compared with O-H...O separations in isotypic M(3)H(SeO(4))(2) crystals. In addition, it was found that the distortion of the SO(4) tetrahedra in Tl(3)H(SO(4))(2) is less than that in isotypic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...